Bertrand's paradox
Paradox described in the Calcul des probabilités (1889) of the French probabilist J. Bertrand (1822–1900). What is the probability that a chord drawn at random in a circle is longer than the side of an equilateral triangle whose three corners touch the circle? It is longer if its midpoint falls nearer the circumference than the centre of a radius bisecting it, so the probability is ½. Keeping one end of the chord fixed, it is longer if the angle at which it is drawn is within the 60° arc of the triangle, so the probability is 1/3. Or, it is longer if its midpoint lies in the area of the inner circle with radius one half of the original; this circle occupies one quarter of the area of the original, so the chance is 1/4. Bertrand used the paradox to show that there is no unique best way of applying the principle of indifference to such a case.

Philosophy dictionary. . 2011.

Look at other dictionaries:

  • Bertrand's paradox — There are three different paradoxes called Bertrand s paradox or the Bertrand paradox: * Bertrand s paradox (probability) * Bertrand paradox (economics) * Bertrand s box paradox …   Wikipedia

  • Bertrand's paradox (probability) — Bertrand s paradox is a problem within the classical interpretation of probability theory. Consider an equilateral triangle inscribed in a circle. Suppose a chord of the circle is chosen at random. What is the probability that the chord is longer …   Wikipedia

  • Bertrand's box paradox — is a classic paradox of elementary probability theory. It was first posed by Joseph Bertrand in his Calcul des probabilités , published in 1889. There are three boxes: a box containing two gold coins, a box with two silver coins, and a box with… …   Wikipedia

  • Bertrand's box paradox — There are three boxes, one with two gold coins, one with one gold and one silver, one with two silver. A coin drawn at random is gold. What is the probability that the other coin in the same box is gold? The coin came either from the first box,… …   Philosophy dictionary

  • Russell's paradox — Part of the foundations of mathematics, Russell s paradox (also known as Russell s antinomy), discovered by Bertrand Russell in 1901, showed that the naive set theory of Frege leads to a contradiction.It might be assumed that, for any formal… …   Wikipedia

  • Russell's paradox — Math. a paradox of set theory in which an object is defined in terms of a class of objects that contains the object being defined, resulting in a logical contradiction. [1920 25; first proposed by Bertrand RUSSELL] * * * ▪ logic       statement… …   Universalium

  • Cantor's paradox — In set theory, Cantor s paradox is the theorem that there is no greatest cardinal number, so that the collection of infinite sizes is itself infinite. Furthermore, it follows from this fact that this collection is not a set but a proper class; in …   Wikipedia

  • Moore's paradox — concerns the putative absurdity involved in asserting a first person present tense sentence such as It s raining but I don t believe that it is raining or It s raining but I believe that it is not raining . The first author to note this apparent… …   Wikipedia

  • russell's paradox — ˈrəsəlz noun Usage: usually capitalized R Etymology: after Bertrand Russell : a paradox that discloses itself in forming a class of all classes that are not members of themselves and in observing that the question of whether it is true or false… …   Useful english dictionary

  • Bertrand paradox (economics) — For other paradoxes by Joseph Bertrand, see Bertrand s paradoxIn economics and commerce, the Bertrand paradox ndash; named after its creator, Joseph Bertrand ndash;describes a situation in which two players (firms) reach a state of Nash… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”