# Zermelo–Fraenkel set theory

﻿
Zermelo–Fraenkel set theory
The first rigorous axiomatization of set theory was presented by Ernst Zermelo (1871–1953) in 1908, and its development by A. A. Fraenkel (1891–1965), adding the axiom of replacement, is known as ZF. If the axiom of choice is added it is known as ZFC. For other axioms see choice, extensionality, power set, replacement, sum set.

Philosophy dictionary. . 2011.

### Look at other dictionaries:

• Zermelo–Fraenkel set theory — Zermelo–Fraenkel set theory, with the axiom of choice, commonly abbreviated ZFC, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics.ZFC consists of a single primitive ontological notion, that of… …   Wikipedia

• Zermelo set theory — Zermelo set theory, as set out in an important paper in 1908 by Ernst Zermelo, is the ancestor of modern set theory. It bears certain differences from its descendants, which are not always understood, and are frequently misquoted. This article… …   Wikipedia

• Set theory — This article is about the branch of mathematics. For musical set theory, see Set theory (music). A Venn diagram illustrating the intersection of two sets. Set theory is the branch of mathematics that studies sets, which are collections of objects …   Wikipedia

• set theory — the branch of mathematics that deals with relations between sets. [1940 45] * * * Branch of mathematics that deals with the properties of sets. It is most valuable as applied to other areas of mathematics, which borrow from and adapt its… …   Universalium

• Zermelo Fraenkel — Die Zermelo Fraenkel Mengenlehre ist eine verbreitete axiomatische Mengenlehre, die nach Ernst Zermelo und Abraham Adolf Fraenkel benannt ist. Sie ist heute Grundlage fast aller Zweige der Mathematik. Die Zermelo Fraenkel Mengenlehre ohne… …   Deutsch Wikipedia

• Zermelo-Fraenkel-Mengenlehre — Die Zermelo Fraenkel Mengenlehre ist eine verbreitete axiomatische Mengenlehre, die nach Ernst Zermelo und Abraham Adolf Fraenkel benannt ist. Sie ist heute Grundlage fast aller Zweige der Mathematik. Die Zermelo Fraenkel Mengenlehre ohne… …   Deutsch Wikipedia

• set theory — The modern theory of sets was largely inspired by Cantor, whose proof that the set of real numbers could not be put into a one to one correspondence with the set of natural numbers opened the door to the set theoretic hierarchy, and to the study… …   Philosophy dictionary

• Morse–Kelley set theory — In the foundation of mathematics, Morse–Kelley set theory (MK) or Kelley–Morse set theory (KM) is a first order axiomatic set theory that is closely related to von Neumann–Bernays–Gödel set theory (NBG). While von Neumann–Bernays–Gödel set theory …   Wikipedia

• Paradoxes of set theory — This article contains a discussion of paradoxes of set theory. As with most mathematical paradoxes, they generally reveal surprising and counter intuitive mathematical results, rather than actual logical contradictions within modern axiomatic set …   Wikipedia

• Constructive set theory — is an approach to mathematical constructivism following the program of axiomatic set theory. That is, it uses the usual first order language of classical set theory, and although of course the logic is constructive, there is no explicit use of… …   Wikipedia